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Abstract

There is a large and growing body of work that relies on patent data to study patterns of 
technological evolution, knowledge creation and diffusion, and firm technology strategy. 
Analysis of prior art – citations to patents by other patents – has been a core methodology
in the literature, in which citations are the “paper trails” tracking social, organizational,
and geographic pathways of knowledge flows. However, in many instances researchers
have been limited in their interpretations of their findings because citations made by 
patent examiners have not been separated out from citations made by inventors. We
leverage a recent (2001) change in the reporting of patent data that indicates whether 
prior art citations are made by inventors or examiners. Our data consist of citing-cited
pairs of patents generated from a large, random sample of patents issued over the period 
2001-2003. We find the magnitude of examiner citations to be quite high: for all US 
patents granted over the period, 40 per cent of all citing-cited patent pairs are generated 
by examiners; on a per patent basis, examiners imposed 67 per cent of all prior art 
citations. Moreover, some 40 per cent of patents granted in this period have all citations
imposed by examiners, and about 70 per cent of patents have at least half or more of their
prior art citations introduced by examiners. We hypothesize that inventors are more likely
than examiners to cite technologies that are near to the citing patent in space, technology
class, organizational and social boundaries, and time. We find this to be the case for 
geography. However, the magnitude of the difference in geographic citing patterns is so 
small as to be potentially economically insignificant. Regarding technology and vintage 
effects, examiners are more likely to proximate citations than inventors, reversing the 
expected pattern.  Overall, our results do not change the presumption that patents trace
out knowledge flows: inventors face strong legal pressures to reveal all they know, and 
citations do contain a signal of knowledge flows. However, our results indicate that 
examiners are not adding random noise to a core of inventor knowledge but may be 
amplifying the signal attributed to inventors, raising the possibility of Type 2 error for
hypotheses about inventor knowledge flows. We also find differences between inventor- 
and examiner-citations accruing to highly-cited patents, indicating that these groups 
select different patents for citation. However, differences between examiner and inventor
citation streams attenuate over time, which is suggestive of a learning process between 
examiners and inventors that has not been previously considered in the literature.



Introduction

In their seminal paper on knowledge spillovers, Jaffe, Henderson and 

Trajtenberg (1993, p. 578) write that “Krugman. . .perceives that [k]nowledge flows. . . 

are invisible; they leave no paper trail by which they may be measured and 

tracked…But knowledge flows do sometimes leave a paper trail, in the form of citations 

to patents.”  Since that time, analysis of prior art – citations to patents by other patents – 

has been a core methodology in the technology strategy and economics of innovation 

literatures. This increasing use of patents can be traced to both a growing interest in 

knowledge as a driver of organizational performance and economic growth and the 

lower costs of accessing and analyzing large quantities of patent data. 1

A risk associated with the rapid growth in the number and scope of patent 

studies is that the application of patent data to measure economic, organizational, and 

social phenomena could outpace understanding of how the data are generated and what 

they actually mean.    We know that patents are an appropriate measure of innovative 

activities in only a few industries (Levin, Klevorick, Nelson, Winter, Gilbert and 

Griliches 1987).   Further issues arise regarding the meaning of patent citations. Patent 

citations are used to measure knowledge, but whose knowledge?  The prevailing 

assumption is that patents codify the knowledge of individuals and organizations who 

invented the patented technologies. However, other actors are important in shaping the 

contents of patents. Patent examiners and attorneys are involved in drafting the contents 

1 Through the US Patent Office and other patent offices, all patents are freely available online, and there
are additionally some 900 proprietary and non-proprietary electronic patent databases that provide online
patent search tools. In 2001, researchers at the NBER, who pioneered many of the early patent-based
studies of knowledge transfer, made their patent database available for free to the public. The data contain
not only information about all US patents up to1999, but also patent citations, along with a number of
economically interesting variables coded by the NBER team (see Hall, Jaffe and Trajtenberg 2001, for a
description of the database).
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of patents and generating citation lists, and their influence on the data is likely to be 

considerable.

In particular, the fact that every patent passes across the desk of an examiner,

who adds some unknown number of patent citations to it, raises concern that patent 

citations may not be a good measure of direct knowledge transfer between inventors but 

could instead reflect the administrative and institutionally mediated process of patent 

examination. Until recently, examiner citations have not been separated from citations

made by inventors.2  Notwithstanding a few important attempts to analyze examiner

citing patterns and understand whether citations capture knowledge spillovers (Jaffe,

Trajtenberg and Fogarty 2000; Meyer 2000; Michel and Bettels 2001; Thompson 2003; 

Breschi and Lissoni 2004; Cockburn, Kortum and Stern 2004), little is known about the 

magnitude of examiner citations and whether they differ from inventor citations. As a 

result, researchers have been limited in their interpretations of their findings and have 

been forced to treat aggregate citations as a “noisy signal” of knowledge flows, without 

being able to specify much about the actual degree of noise versus signal in the data.

This paper provides a comprehensive analysis of patent citations that accounts 

for differences between inventors and examiners in generating cited-citing patent pairs.

We leverage a recent (2001) change in the reporting of patent data that indicates

whether prior art citations are made by inventors or examiners.  Our data consist of 

some 16,000 citing-cited pairs of patents generated from a random sample of 1,500 US 

2 Unless we specify otherwise, we use the term “inventor citations” to mean prior art citations made by
patent applicants as opposed to patent examiners. These might be made by individual inventors or by a
firm’s attorneys or other individuals representing patent owners.
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citing patents issued over the period 2001-2003.3 We supplement our analysis with 

interviews with patent attorneys and patent professionals. Our empirical strategy is 

twofold. We first show the magnitude of examiner citations. We find it is quite high. 

Based on an analysis of citations from all patents granted in the US between January 1 

2001 and August 31 2003  – 442,839 citing patents and 5.4 million citations – 40 per 

cent of all citing-cited patent pairs were generated by examiners; on a per patent basis, 

examiners imposed 67 per cent of all prior art citations. Moreover, some 40 per cent of 

patents granted in this period have all citations imposed by examiners, and about 70 per 

cent of patents have at least half or more of their prior art citations introduced by 

examiners.

We then set out to understand whether examiner citations differ statistically 

from inventor citations in order to answer the following question: are there systematic

differences in inventor and examiner citation streams that might bias inferences made

from aggregate citation data?  We estimate the likelihood of examiner citations along of 

number of dimensions: self-citation by individual inventors and by firms; geographic 

proximity; similarity of technological class; type of assignee;4 and vintage effects. We

find that examiners differ from inventors in their propensity to cite along these 

dimensions.  However, the difference between mean values in the two citation streams 

is in many cases so small as to be economically insignificant.  In several cases, the 

differences are in the opposite the direction one would associate with aggregate 

citations as measures of inventor knowledge.

3 We do not consider non-patent references in our analysis.  All references to prior art and citations are to 
patents issued in the United States
4 Patent assignees are organizations listed as patent owners.
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A second part of the analysis disaggregates inventor and examiner citations for 

forward citations.  Our objective is to learn whether highly-cited patents – which are 

associated with patents of unusually high economic and technological value – “earn” 

their status through citation by examiners (an administrative process) or citation by 

inventors (an evolutionary, or diffusion, process).   We find evidence of both, with 

surprisingly little overlap between them. We see a pattern in which inventor and 

examiner forward citations streams are initially negatively correlated, but converge over 

time.  The pattern raises the possibility of a channel of learning between examiners and 

inventors previously unexplored in the literature. We draw conclusions for the use of 

patent citations to measure knowledge and high-impact technologies.

What is the practical meaning of prior art? 

Patent data have been used by researchers to measure and track technologies and 

knowledge; in practice, they are generated by a complex legal and institutional process 

that is primarily aimed at classifying and proving the patentability of individual claims.

We first define the practical meaning of prior art citations, then turn to a discussion of 

assumptions made in the literature about their meaning as proxies for knowledge flows. 

A granted patent is a novel, non-obvious and manmade invention: an addition to 

the world’s stock of technological knowledge and a stepping-stone for future inventions

(the latter a primary intention of the patent system). A patent consists of several 

components that define the invention, assign rights to individuals and organizations, and 

delineate the scope of those rights. The description discloses the invention so that it can

be understood by others “skilled in the art”. The core value of a patent is expressed in 

its claims, which detail aspects of the invention over which inventors and assignees may 
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exercise ownership rights. Claims cover intellectual property that is not already 

foreshadowed by existing patents or public knowledge. To make the case that claims are 

valid (new and non-obvious), patents contain prior art. Prior art may consist of patented 

and nonpatented information; in fields where patenting is relatively new, much of the 

prior art may be in the public domain, e.g., published in trade journals. 

Prior art citations serve a number of heterogeneous functions: by anticipating the 

claimed invention, they may be used to limit or reject an individual claim or an entire 

patent; prior art may strengthen claims, by establishing that earlier versions of the 

inventions were different from or inferior to the current invention; or they may be 

“boilerplate” that establish facts described in the patent. Patents that have an unusually 

high number of prior art citations are likely to contain valuable claims, since the claims

were approved despite the existence of a large body of prior art. Allison et al (2003) 

show that valuable patents, measured as litigated patents, cite more prior art than non-

litigated patents; Gittelman and Kogut (2003) found that patents that cite a large body of 

non-patented prior are more highly cited, a measure of patent value. Claims and prior 

art thus operate together to establish validity and novelty over existing knowledge, and 

delineate the scope and strength of the intellectual property covered by the claims.

The role of prior art in proving (or disproving) the validity and novelty of claims

underscores that the contents of a patent are not just codified knowledge but legal tools 

that embody and reflect the strategies of a variety of actors: individuals, firms,

competitors, and the patent office. While some portion of the prior art contained in 

patents traces out knowledge flows, citations also reflect the heterogeneous objectives 

and interests of these different actors.
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What is the meaning of patent citations for studies of technology and knowledge

transfer?

A central premise of the technology strategy and economics of innovation 

literatures that use patent citation data is that citations reveal evolutionary pathways 

across innovations, organizations, and time. We may identify two broad streams in the 

literature. The first seeks to understand patterns of knowledge diffusion, and uses patent 

citations to trace out knowledge flows across and within organizations, geographic

space, and populations of inventors. The second stream, which we group into a category

we call productivity studies, is broadly concerned with determinants of technological 

performance. Here, citation data are used both as a measure of the impact of patents (as 

captured by forward citation counts) as well as to develop variables that measure 

different structural characteristics of inventions: breadth, originality, vintage, 

complexity, and fragmentation of the knowledge base. The two groups of studies make

different assumptions about the meaning of patent citation data. We consider each in 

turn.

Patent citations as a measure of knowledge flow 

The core assumption in the diffusion literature using patent citations is that

“patent citations allow us to observe the patterns and end points of the knowledge 

transfer process” (Song, Almeida and Wu 2003). This is a particularly strong 

assumption. We may be confident that a citation from patent A to patent B indicates a 

technological relationship between them, which may be quite strong (patent A would 

not be possible without patent B) or relatively trivial (patent A belongs to a class of 

patents of which B is representative). However, we can be less certain that inventors of 

patent A actually knew about patent B prior to their own invention. 
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The legal rules work in favor of the interpretation of citations as revealing

knowledge flows from cited to citing patents.  Inventors are required to submit patent 

applications that contain all published art they are aware of (patented and in the public

domain) that is relevant to the claims they are presenting. Ultimately, if a patent is 

approved that does not list relevant prior art (whether by the examiner or inventor), it 

might be vulnerable to infringement litigation and be found invalid. If, during litigation,

it can be shown that inventors knew of prior art and failed to disclose it, they are subject 

to even greater penalties.5  The following quote, by a patent attorney and former

inventor, is illustrative of pressures on inventors and their attorneys for full disclosure:

The first [time], as an inventor, I was introduced to prior art as a
engineer at IBM. There, we were told to disclose and discuss all 
pertinent publications before they were filed. And failure, we were 
told by the attorneys, was punished by fraud, imprisonment, and 
would result in the disbarment of the attorney that was representing
us. Basically, the attorneys said that we would have the time in jail 
to basically explain to them why they could no longer practice law, 
and so forth, if we didn't give them the right references. Maybe this
was unique to IBM, but it's something that I’ve carried throughout 
my career in talking with inventors, and so forth, as far as how 
important I think the duty of disclosure is. 6

Patent citations should thus reveal a core of inventor knowledge.  But they also 

likely contain references that are unrelated to inventor knowledge.  It is common 

practice for inventors to hire attorneys and professional patent searchers to research 

prior art and draft strong claims.  The following quote, by the same attorney, illustrates 

5 This risk raises the interesting possibility that inventors have incentives not to know about related 
inventions. Where patents are at risk, communication with competitors (for instance, attending
conferences or social gatherings) may represent a negative externality for firms not only because 
engineers could reveal too much information to competitors, but because engineers may learn too much
information from competitors!

6 Testimony included in “Public Hearing on Issues Related to the Identification of Prior Art During the
Examination of Patent Application”, June 28, 1999, before the United States Patent and Trademark Office.
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how a comprehensive search beyond inventor knowledge is often needed to write strong 

patents that will stand up to post-issue challenges:

One of the worst feelings that I've even seen at a licensing table is 
when you're sitting there trying to license a patent and someone
passes across the table a 102(b) reference [a prior art reference] 
that is completely is out of left field, you've never seen before, that 
says this patent is invalid and indefensible. It’s something that no 
one, as a practitioner, wants to face, and would rather face, have 
that reference come up, early on in the prosecution procedure, and 
be able to be discussed with the examiners, who really know what 
they're talking about.7

The prevalence of lawyers and professional searchers in writing patents is likely 

to dilute the signal of direct flows contained in inventor citations.  These professionals 

(attorneys and searchers), many of whom were formerly patent examiners, draft claims

and search patent databases – a complex, idiosyncratic process – to uncover all 

potentially relevant prior art; these may include, but not be limited to, works that the 

inventors were actually aware of or used in their own invention. Indeed, patent 

professionals have incentives to search as widely as possible beyond the knowledge of 

inventors to maximize their own value added and the chances that the patent will be

approved with strong claims. The addition of prior art by attorneys and professional

searchers would presumably add a layer of citations that do not correspond to inventors 

knowledge.

Finally, all US patents must submit to an examination process by patent 

examiners, civil servants working at the US Patent and Trademark Office in 

Washington DC. The role of the examiner is to certify the validity of a patent’s claims

to novelty and non-obviousness: examiners check the lists of prior art submitted by 

7 Ibid.
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inventors and attorneys and make changes based on their own search of prior art and 

reading of the claims. Examiners are often treated in the literature as objective, 

independent arbiters of prior art who follow uniform procedures, but in fact they 

communicate with inventors during the examination process, and there is a great deal of 

heterogeneity in the practices of individual examiners (Cockburn, Kortum and Stern 

2004). Furthermore, examiners are subject to administrative pressures that limit the 

degree to which they search comprehensively. Examiners are expected to search all 

possible art, including patents (over 5 million in the US alone), non-patented literature 

such as books and journals, the Internet, and even emails, to understand the state of 

current art. However, the USPTO imposes production goals on examiners that limit the 

time for search and examination; it is estimated that examiners can reasonably allot less

than eight hours to examine an individual patent.8

In summary, aggregate citations observed by researchers do not only capture 

those inserted by inventors but also citations that lawyers, patent searchers and 

examiners judged ought to be included.   Faced with this problem, researchers have

acknowledged that while patent examiners add some citations, there is no reason to 

expect that they would systematically bias the data. In a study to investigate this type of

measurement error, Jaffe, Trajtenberg and Fogarty (2000) surveyed inventors regarding 

their prior knowledge of cited works contained in their patents.  They found that less 

than one third of inventors had a high degree of familiarity with works cited in their

own patents, one third of inventors learned of the cited work after completing their own

8 “Public Hearing On Issues Related To The Identification Of Prior Art During The Examination of a 
Patent Application”, USPTO, July 14, 1999.
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invention, e.g., during the process of drafting the patent, and one-third had no prior or 

post-hoc knowledge of the cited work(s) at all, which the authors attribute to examiner

citations. Their survey findings, while supportive of the idea that aggregate citations are 

a “noisy signal” of knowledge flows, indicated that the ”noise” created by examiner

citations may in fact be of greater magnitude than the “signal” of inventor knowledge 

contained in aggregate citation streams.

Examiner citations and inferences about citations as knowledge flows 

We have discussed two reasons why aggregate citations may not approximate

inventor knowledge: the participation of attorneys and patent professionals in drafting 

inventor citations, and the addition of citations by examiners.  Nearly all patents in our 

dataset list lawyers on their front page, attesting to their importance in the process of 

generating prior art. Insofar as lawyers are likely to be cognitively and behaviorally 

much closer to examiners than to inventors we expect that, ceteris paribus,  inventor 

citations would approximate examiner citations when lawyers are involved and that the 

magnitude of the difference between inventor and examiner citations would be greater 

for patents where lawyers were not involved.

To what extent could examiner citations “contaminate” inferences about 

knowledge flows made from the aggregate data?  In order to answer this, we need to 

know both the magnitude of examiner citations as well as their distribution with respect 

to inventor citations. We start with some simple assumptions about the characteristics of 

prior art we expect inventors “ought to” be adding to their own patents. We expect that 

inventors’ knowledge of technological antecedents is cognitively bounded, specifically

that inventors’ knowledge of prior art is likely to be strongest for technologies that are 
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closest to them along a number of dimensions: social, organizational, technological, 

geographic, and chronological. We operationalize these dimensions by measuring 

inventor and examiner citations for the following elements: self-citation at the level of

individuals and firms; common technological classes; common geographic locations; 

and similar time periods.  Our a priori expectation is that increasing distance along each 

of these dimensions will decrease inventor awareness, thereby increasing the chances

that examiners will add citations.  While cognitive awareness of technologies is clearly 

more complex than these simple assumptions, they allow us to test the degree to which

the data deviate from the most basic assumptions about inventor knowledge. If we find 

that they are rejected, we might question the appropriateness of making more complex

assumptions about inventor knowledge from the aggregate data. 

Figure 1A shows graphically our distributional priors for inventor citations. The 

x-axis is a given dimension, for example geographic distance, and the y-axis represents

the expected frequency of citations.  Under the hypothesis of knowledge localization, 

inventor citations would be concentrated towards the origin of the x axis (citations to 

local patents).  This is the “true” distribution of inventor knowledge, labeled INV in the 

graph, that researchers seek to measure. However, researchers only estimate knowledge 

flows with aggregate citations, and cannot tell which citations are added by inventors or 

examiners. Inferences about patterns of interest, e.g., localization or vintage effects, are 

made from the aggregate data. How might these inferences change under different 

distributional assumptions about examiner citations?

We describe two possible scenarios with different assumptions of examiners’

behavior. In figure 1B examiners are agents with extensive knowledge in the field 
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whose main purpose is to “fill the gaps” existing in the prior art list submitted by 

inventors. For example, examiners would add citations to other firms, to patents created 

in more distant places, patents in other technologies and older patents. Consequently, 

examiners’ distribution of citations, labeled EXA in graph 1B, would be skewed toward 

more distant values on the x-axis. The distribution observed by researchers, labeled 

AGG in graph 1B (for aggregate), is the aggregation of inventor and examiner citations. 

Under moderate to low levels of examiner citations, AGG would be flatter than INV,

making it harder to find any statistically significant relationship between the 

independent variable in x and estimated knowledge flows. This distribution of examiner

citations increases the probability of making a Type II error, lowering estimated

coefficients, and increasing the chance of accepting the null hypothesis. For example, if 

x represents physical distance, examiner citations work against a finding of localization 

in the aggregate data.  Thus, if significant effects are nonetheless found for the variable 

of interest, such a pattern would increase confidence in the inference of localization, as 

the “true” rate is higher than estimated from the aggregate data. Thus, if significant 

effects are nonetheless found, such a pattern would increase confidence in the inference 

of localization. 

Figure 1C shows the case in which the distributions of inventor citations and 

examiner citations track each other closely. Behaviorally, such a pattern could emerge

if inventors search widely (with the assistance of lawyers and professional searchers) so 

that their citations anticipate, with some error, what examiners would add. Such a 

pattern could also emerge if examiners’ search is guided by inventors’ list of prior art, 

such that examiners search locally with respect to inventors own prior art searches. 
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These behaviors are at odds with a “random noise” pattern, insofar as the generation of 

the two citation streams is highly correlated. Statistically, such a pattern would raise the 

probability of Type I error, by amplifying the signal of localization in the aggregate data

to a greater extent than in the inventor-citation stream. With identical distributions, 

estimated coefficients would not be biased but significance levels would be inflated 

without correction for examiner-added citations. 

Our empirical approach to explore which of these effects hold is threefold. First, 

we estimate the magnitude of examiner citations to understand what characteristics of 

patents result in a high number of examiner-added citations.  We then perform

univariate difference in means tests for each dimension described previously. We

estimate whether examiner citations differ, on average, from inventor citations, and if so 

whether the difference is in the hypothesized direction in which “nearby” citations are 

generated by inventors and more distant citations by examiners. Finally, we then turn to 

multivariate logit regressions to estimate the odds of a given citation dyad as being 

generated by an examiner or an inventor, conditional on all of the dimensions measured

in the univariate means tests. A key test is whether, controlling for all other factors, we 

can observe statistical differences in the generation of the two citation streams and 

whether the direction of the difference meets our simple assumptions about inventor 

knowledge.

Patent citations as a measure of high-impact innovations

A second group of studies using patent data, which we broadly term productivity 

studies, makes a much weaker assumption about the theoretical meaning of patent 

citations. Here, citation data are used as a measure of the impact of patents, as captured 
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by forward citation counts. The core assumption is that forward citations that accrue to

an issued patent are a good measure of the economic and social value of the cited 

invention. A number of studies have shown that forward citations correlate with non-

patent measures of value, such as firm market value, litigation, and expert evaluation of

technological impact, so there is good evidence that this assumption is correct (see Hall

& Trajtenberg (2000) for a review). However, the process by which highly-cited patents 

are generated is still a matter of speculation. A highly-cited patent is assumed to attain 

high impact status through its diffusion to other inventors; as Henderson, Jaffe & 

Trajtenberg (1998) write: “Implicit in this approach is a view of technology as an 

evolutionary process, in which the significance of any particular invention is evidenced, 

at least partly, by its role in stimulating and facilitating future inventions. We assume

that at least some of such future inventions will reference or cite the original invention

in their patents, thereby making the number and character of citations received a valid 

indicator of the technological importance of an invention.”

If, however, citations made by patent examiners are responsible for generating 

highly-cited patents, we may infer that important inventions emerge not so much

through evolutionary processes but through ascription via an administrative process.

Inventors may learn about prior art from patents that are frequently cited by examiners,

indicating a hub-and-spoke process of knowledge transfer with examiners at the center, 

rather than a structure connecting inventors directly. 

We analyze a cohort of very highly-cited patents and disaggregate their forward 

citations into those made by inventors and those made by examiners. We find that 
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examiners and inventors do not overlap very much in their selection of important

patents, but that these differences diminish over time.

Data and variables 

Starting in January 2001, the USPTO has indicated on the front page of patent 

images which prior art citations were added by examiners. We collected the front page 

images of all utility patents granted between January 1st 2001 and August 26th 2003 

from the USPTO. This yielded a group of 442,839 patents citing back to 5,434,883 

patents in their prior art.9  Tables 1 and 2 provide summary information for the dataset. 

On average patents cite 12.2 patents. Patent examiners are an important source of 

citations representing about 40 per cent of all citing-cited dyads in each of the three

years. The magnitude of examiner citations is even higher when measured on a per 

patent basis: for the average patent in our dataset, examiners imposed 67 per cent of all 

prior art citations. The difference between the dyad and patent-level means derives from 

the fact that between 38 and 40 per cent of patents granted over the period have all

citations imposed by examiners; in contrast, only 8 per cent of patents had no examiner-

added citations. About 70 per cent of the patents have at least half or more of their prior 

art citations introduced by examiners.

Our analysis requires that we match individual elements of citing and cited 

patents, in particular the names of individuals and organizations; to reduce this to a 

manageable task, we create a sample of 1,500 citing patents from the full dataset. Since 

9 Consistent with other studies, we only analyze cited patents granted in the US. In our sample, 849 citing
patents cite at least one patent filed in another system (mainly Japan and the European Union), generating
4,971 citing-cited pairs. Of these, roughly 90% are inventor citations and 10% citations imposed by
examiners. However, according to our interviews, it is likely that a significant portion of foreign patents
listed as inventor citations were in fact added by foreign examiners during application for international
patents.
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the USPTO often issues patents in batches, with seasonal and firm-level variation, we 

do not sample specific weeks or months but instead randomly select 500 patents from

each of the three years in the data to achieve a random distribution of patents across

time.

The 1,500 citing patents generate 17,866 prior art citations (“cited patents”); 

only 26 patents (2.4 per cent of the sample) have no citations at all. Detailed data are 

not available for patents granted before 1976, leading us to remove 1,767 of the cited 

patents granted before that date, yielding a final sample of 16,089 citing-cited patent 

pairs. Standard distributional tests (e.g. Mann-Whitney and Kolmogorov-Smirnov ) 

provide supporting evidence (bottom of table 2) that our sample is random and 

representative of the full dataset with respect to the following relevant variables:

citations per patent, percentage of examiner citations per patent and application year. To 

explore whether the distribution across technology classes in our samples is similar to 

that of the full datasets, we compare the top 20 most frequent classes in both groups and 

find an overlap of over 80 per cent for each year. The results indicate that we have a 

representative sample from the population of patents issued in that time period.

Except for technology classifications, patent data are not standardized, resulting 

in a great deal of variation in data formats across common elements. To correct for this, 

we perform a number of operations on the data, in order to identify common assignees, 

geographic locations, and individuals. Changes in the data introduced by our cleaning 

operations reveals the extent to which failure to perform similar operations can produce 

errors in identifying matching elements contained in patent data. 
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For corporate ownership, we create two variables: dif_company and dif_parent,

which take a value of one if the citing-cited dyad are each assigned to different firms or 

different corporate parents, respectively. To construct these variables we perform three 

steps. We first standardize names by correcting for differences in spelling and format

(for example: Sam Sung Electronics/Samsung Electronics; Minnesota Mining and 

Manufacturing Co./3M). In the second step, we group assignees with different names

(e.g., Nokia Finland and Nokia USA) that are subsidiaries of the same corporate parent. 

We identify the ultimate parent for each assignee using the Directory of Corporate 

Affiliations based on their parent in the year of patent application, going back to 1991.

Assignees on patent applications before 1991(27 per cent) were matched to the 1991 

directory. We further correct for mergers, acquisitions, and name changes since 1976. 

Taken together, these changes reduce the number of unique assignee names by 28 per 

cent, from 5,933 to 4,239: 1,002 assignee names are eliminated through corrections for 

name variations; 1,694 unique assignee names are removed in the second step 

accounting for corporation affiliations and mergers. These changes indicate that self-

citation rates could be affected without accounting for mergers and corporate parents, 

specifically overestimation of “cross-firm” citation rates and underestimation of the rate 

of self-citation. 

To control for heterogeneity in patent practices across different types of 

inventors, we identify whether the patent assignee on citing and cited patents was one of 

four possible types: Government, Academia, Corporate, Other.10

10 Government includes US government agencies; “other” includes individual inventors, non-university
research institutions, foreign government agencies, and unspecified assignees.
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We assigned the geographic location of citing and cited patents based on the 

locations of inventors. Our sample generated 40,797 inventors (58 per cent located in 

the US) and 8,474 different locations (51 per cent in the US). We identify locations for 

all inventors listed on each patent, not only first inventors. Similar to assignee data, 

locations also present problems and require significant cleaning and checking. We first 

perform a manual cleaning of city, state, and country names11. Second, we identify 

longitude and latitude point data using the United States Postal Office for locations

within the US and GEOnet name server of the National Imagery and Mapping Agency 

for all other locations. These steps allow us to identify 73 per cent of locations, leaving 

2,301 locations (mostly in Asia) unidentified. Country natives checked each list to 

match place names to those given in the GEOnet and USPTO databases. As a result, we

are able to identify at least one inventor location for all but four patents involved in six 

citing-cited pairs.

Prior studies have used both discrete geographic units as well as continuous 

distance in miles to measure geographic proximity. We adopt both methods, as each 

captures different aspects of the relationship between geography and knowledge flows. 

We first measure administrative boundaries at the country, city, state, economic area 

and county level12. We construct dummy variables that take a value of one if none of 

the inventors in the citing-cited pair share a common location for each of these units

11 To our surprise, state and country data was far from perfect. Unfortunately, the USPTO uses the same
abbreviations for countries and states. For example, CA can be California or Canada, IL can be Illinois or
Israel. This problem is also present in the NBER dataset. Although this problem does not seem to affect a 
great number of patents, researchers should be aware of it.
12 In an effort to identify geographic areas that mimic economic activity and not state or administrative
boundaries, the Bureau of Economic Analysis (BEA) defined 171 economic areas that span the US. Each
economic area consists of one or more nodes – metropolitan or similar areas that serve as centers of
economic activity – and the surrounding counties that are economically related to the nodes. The main
factor used in determining the economic relationships among counties is commuting patterns, so each
economic area includes, as far as possible, the place of work and the place of residence of its labor force.
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(dif_country, dif_city, etc.)13. In addition, we create a variable distance which measures

the great circle distance in miles between citing and cited patents using latitude and 

longitude coordinates. 

Identifying individual inventors presents a challenge since it is reasonable to 

expect that identical names can correspond to different individuals. We construct 

different rules with increasingly stringent criteria for matching inventors between citing 

and cited patents. First, we identify common full names, in which first name, middle,

and last names must all be the same. The variable same_inventor takes a value of one if 

the citing-cited pair share a common inventor according to this matching principle. This 

still leaves the possibility that individuals may have exactly the same name and middle

initials. To increase the hurdle for a match, we create two additional variables. The first,

same_inventor_company identifies if the full names are the same and company assignee 

is the same. The same name/company increases the probability that the identified pair is 

indeed the same person. To allow for job mobility, we create a third variable, 

same_inventor_city in which full names are the same and the locations for citing and

cited patent are no more than 100 miles apart. The first matching principle is the most

flexible because it recognizes that inventors can move to other locations or companies.

However, it is also the most likely to generate false matches leading to Type 2 

measurement error (inferring a common link when no link exists). The last two 

matching rules are more restrictive, in that they are less likely to assume common

inventors in cases where the same names belong to different people.

13 The last three variables are constructed only for citations where both patents have at least one
American inventor.
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We also create same_examiner and same_lawyer to identify common examiners

and lawyers on citing and cited patents. We match examiners, lawyers, and law firms

using rosters provided by the USPTO.14 These variables control for self-citation

patterns not just for inventors but for other individuals involved in drafting prior art 

citations.

We create a variable dif_technology to identify whether the citing-cited pairs 

belong to the same technology class. We use the International Patent Classification 

(IPC) instead of the United States Classification (USC) for this purpose, and match

citing-cited patent pairs at the 4-digit level.15 A number of reasons drive this choice. 

First, the IPC system follows a nested hierarchical structure, allowing us to look at 

different levels of aggregation in the technology domain. Second, the IPC system is 

more similar to a traditional industry end-use classification system than the US system, 

which classifies patents by function. One problem with the IPC is that older patents are 

not reclassified when classification codes change (which happens infrequently). This 

would make our matching test more conservative, insofar as patents that belong to the 

same class are coded differently because the more recent patent was subject to a newer 

classification code. To account for this, we update IPC codes based on USPTO-IPC 

concordance tables.

Table 3 shows definitions for the variables used to measure linkages between

citing and cited patents for all of the elements discussed above.

14 This roster not only allows us to match names of lawyers on citing-cited patent pairs but also provides
information on whether the lawyer is an in-house counselor or not. Companies that introduce numerous
applications per year, such as Intel, IBM, Procter & Gamble, have a group of internal lawyers that deal
with the applications for that company. In some cases, in-house counselors and external law firms are 
both involved in a patent application.
15 We also estimate our models at the 2- and 3-digit levels with similar results.
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Estimating the proportion of examiner-added citations 

We expect that because of the limited time for search allotted to examiners and 

the complementarity between examiner and inventor search processes, the proportion of 

examiner citations will be inversely proportional to the number of citations provided by 

inventors. We also control for characteristics of the assignee that would affect their 

skills in patenting; to the degree that inventors are skilled in patenting and perform

comprehensive searches, examiners should add proportionately fewer citations.

At the citing patent level, we estimate the following specification:

Yi=Xi  + (1)

Where Yi is the percentage of examiners imposed citations and Xi is a vector of 

the following patent traits: the logarithm of number of inventor citations that were 

originally submitted in the patent application (log_inventor_citations), plus a set of 

control variables.  Foreign companies may be less familiar with the American patent

application process, thus we would expect examiners adding fewer citations to 

American-origin patents; we indicate whether the assignee is an American company

(american_company).   Academic institutions have become proactive in patenting in 

recent years, and could have developed advanced patent-writing skills; we also specify

whether the assignee belonged to one of the following groups – government, academia,

corporate, and other.  Organizations that have abundant experience at patenting would 

be better prepared for the application process by offering a more complete list of prior 

art, minimizing the role of examiners; we include a variable indicating whether the 

assignee is among the top 200 owners of US patents, based on patents awarded over 

1988 to 2003.  Analogously, patents from assignees with legal counselors that help 
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them to conduct more thorough prior art searches would be expected to receive a 

smaller portion of examiner citations; we code for whether or not there was a lawyer 

involved in drafting the patent application (lawyer).

Table 5.1 shows the summary statistics and table 6.1 correlation values for all 

variables. Table 7 shows these results for OLS estimation of equation (1) using fixed 

effects by assignee. For all models, the expected relationship between inventor and 

examiner citations holds: the larger the number of citations added by inventors, the 

lower the proportion of patents subsequently imposed by the examiner. The coefficient 

for lawyers is negative but insignificant. Regarding experience, we do not find any 

effect for firms that have patented exhaustively nor for foreign firms.

Comparing examiner and inventor citations: univariate tests 

We first conduct univariate tests comparing means of inventor and examiner

citing-cited dyads along the following dimensions: geographic co-location, both in 

terms of continuous distance and discrete measures of co-location; self-citation at the 

individual, firm and corporate level; time; and technology class. Table 4 shows the 

results from these tests. 

Two surprising findings stand out. First, we find slightly more localization effect

for inventor citations than examiner citations, but the magnitude of the difference is so 

small for most measures as to be economically insignificant. The greatest difference in 

inventor and examiner proportions occurs for citations to patents with locations outside 

the US. Overall, however, we do not see large differences in means that would indicate 

“noisy signal” or “gap filling” patterns by examiners. To further show this, we plot the 
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distance of examiner citations against inventor citations (figure 2). The distributions 

track one another closely, suggesting a pattern consistent with Figure 1C.

The second unexpected finding concerns self-citation patterns. While we find 

that patent applicants are more likely to cite themselves at the firm level, they have a 

lower rate of self-citation at the individual level. For our least restricted inventor match,

where only the names are matched, we find a higher (but not significantly so) rate of 

self-citation among inventors than examiners. However, for our restrictive inventor 

measures, in which we have higher confidence of identifying the same individuals 

(same inventor/same company; same inventor/same city), examiners are more likely to 

include self-citations than inventors themselves. Since we have difficulty accepting that

inventors forget about their own past patents, we assume that they omit self-citations

because they lack patenting skills, or for strategic or legal reasons. Examiners

subsequently add back what inventors “should have” included in their original lists. Our 

discussions with attorneys and patent professionals do not suggest any strong theoretical 

reasons for this pattern, e.g., in which inventors would gain by avoiding self-citation, so 

we interpret this pattern as evidence of poor patent practice on the part of inventors.

Regarding the other variables, we find that inventors are more likely to add prior 

art from different technological classes than examiners, and here the difference is large 

(49 per cent and 38 percent, respectively). Two possible explanations present 

themselves. The first is that inventors have a greater breadth of knowledge about 

patented technologies than examiners, who are narrowly specialized by technological 

field. The second (and we feel, more plausible) explanation stems from the patenting 

process itself. Patents are not classified until they go through the examination process, 
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so inventors are adding citations without knowledge of the ultimate detailed 

classification code of the invention. In the process of examining patents, examiners

develop classification codes based on individual claims, at the same time searching for 

prior art that is relevant to those claims. This endogenous process in which 

classifications and prior art are simultaneously generated by examiners would be 

consistent with a pattern in which examiners match citing and cited patents on 

technology to a greater degree than inventors.

The results on vintage effects indicate that examiners are more likely to add 

recent citations than inventors, with a mean difference in years of 7 versus 9.8 years. 

The long time lags for both inventors and examiners (7 and 10 years) mean the 

difference is probably not due to administrative delays which would allow examiners to 

know about new patents sooner than inventors. While we do not have a strong 

theoretical explanation for this finding, we note that it is consistent with a pattern in 

which inventors and lawyers may choose to cite older patents whose owners are less 

likely to litigate than owners of recently issued patents.

Comparing inventor and examiner citations: Multivariate analysis 

To analyze differences between examiner and inventor citations streams, we 

also estimate models at the dyad level for each citing-cited pair in our sample. We

estimate the following empirical specification:

Prob(examiner citationij=1 | Xij)=F( Xij) + uij (2)

where F(Z)=ez/(1+ez) is the cumulative logistic distribution, our dependent 

variable is binary and equal to 1 if the citation was imposed by the examiner and 0 if it 

comes from the inventor, with Xij a set of variables that indicate similarities between 
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citing patent i and cited patent j along the dimensions shown in table 3: self-citation by 

individuals, assignees, corporate parents, lawyers and examiners; geographic location; 

technology classes and time. Since citation pairs are not necessarily independent of 

citing patents, estimating equation (2) without paying further attention to error terms

could generate biased estimates. We explore three alternatives to deal with this 

problem: using fixed effects per citing patent; correcting standard errors for

heteroskedasticity  by clustering on citing patents; and random-effects model on a panel 

data structure. We adopt the latter for a number of reasons. First, with a fixed-effects 

model, all citing patents that have all or zero citations added by examiners would drop 

from our sample, resulting in a loss of 48 per cent of citing-cited pairs. Second, a 

Hausman test comparing fixed and random effects specifications favor the latter. Third, 

by explicitly modeling the individual component (citing patent) that is common across 

cited patents, a random effects model offers an extra advantage over heteroskedasticity

correction of standard errors. Fourth, tests for all models show that the panel-level

variance component (within citing patent variation) is important and the panel estimator

is different from the pooled estimator. Thus, our empirical approach is to estimate the 

following equation 

Prob(examiner citationij=1 | Xij, i)=F( Xij + i) + ij (3) 

where uij= i + ij , i is the unobserved heterogeneity for the ith citing patent 

with mean zero and variance 2 and

 examiner citation=1 Xij + i + ij > 0

 for ij iid logistic distributed with mean zero and variance 2 so that ij is also 

orthogonal to i (Greene 2003).
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Table 5.2 shows the summary statistics and table 6.2 the correlation values for 

all variables. Table 8 contains results in two sets.  The first estimates the model for all 

dyads (models 1-4), the second set excludes patents with all citations imposed by 

examiner (model 5); then excludes patents with no patent added by examiner (model 6) 

and finally excludes both sub-samples (model 7). We include the latter three models as 

robustness checks of our full-sample models. Coefficients for all variables are expressed 

as odds ratios. An odds ratio greater than one indicates that examiners are more likely to 

have added the citation than inventors; odds ratios less than one indicate that examiners

are less likely than inventors to have added a citation. Statistical significance for a given 

coefficient indicates that examiners and inventors differ in the propensity to add a 

citation.

Table 8 provides two panels at the bottom. The first panel presents the number 

of citing-cited pairs, number of citing patents, and minimum, average and maximum

number of cited patents by citing patent. The second panel offers two tests to evaluate 

the models. The Wald Chi-square test provides evidence of model fit (similar to an F 

test), the Chi bar-square tests whether the pooled estimator is equal to the panel 

estimator. For all models, tests indicate that the panel data estimators are preferred over

the pooled estimators.

Now we turn to discuss our results. We first consider self-citation at the firm

level. In model 1, self-citation is measured for the company level: a positive, and 

statistically significant coefficient on dif_company suggests that a citation across 

different firms is 78% more likely to be an examiner citation. For self-citation at the

corporate parent level (dif_parent, model 2), the coefficient is again positive and 
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significant, indicating that self-citations at the corporate level are more likely to be 

generated by inventors. This corresponds to our simple expectation that inventors are 

more likely to generate self-citations than examiners.

The coefficient for self-citation at the individual inventor level in models 1 and 

2 is not statistically significant. In models 3 and 4 we include more restricted definitions 

for inventor self-citation. Here, the coefficients reinforce the findings of the univariate 

analysis: self-citations to patents with at least one of the same inventors as the citing 

patent are more likely to come from examiners! The magnitude of this unpredicted 

effect is striking. Odds ratios of 2.52 and 1.92 for same inventor/ same city (model 3) 

and same inventor/same company (model 4) respectively indicate that links between

patents with same inventors are at least twice more likely to come from examiners than

from inventors. This clearly violates the assumption that self-citations are more likely to 

be generated by inventors than examiners.

Self-citation at the examiner level is also significant: citing-cited pairs that share 

the same examiner are more likely to be added by the examiner (P<0.01). The 

magnitude of the effect is high: a link between two patents is at least 85% more likely 

by an examiner if she reviews the application of both patents. In other words, examiners

add citations to patents with which they had previous experience; examiners assume a 

role of linking patents based on their own examination practices histories. The 

specialization of examiner by technology also increases the likelihood that examiner

self-citation would be high, since in some art units examiners have examined much of 

the relevant prior art (Cockburn, Kortum and Stern 2004). 
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Technology and vintage effects are also consistent with the univariate tests, and 

are not in line with our simple expectations about inventor citations more likely cluster 

in “nearby” technology classes or years. We estimate models with technology specified 

at the 4-digit classification level. Examiners are less likely to add citations when the 

cited and citing patents differ in technological class (p<0.01, across all models).  As 

shown in model 1 an inventor is 43% (1/0.70) more likely to cite patents from different

4-digit technological classes than from the same classes of the citing patent, suggesting 

that inventors are adding more breadth of prior art than examiners. We also find a 

similar pattern for the variable years, which indicates that examiners are less likely to 

cite older patents than inventors, however, the magnitude of the difference is small.

Figure 4 shows graphically these differences in time for examiner and inventor 

citations.

Finally, the coefficient on distance is equal to one and highly significant, 

indicating an equal probability of a citation being generated by inventors or examiners

across distance. We examine the effects of geography in more detail in models that 

follow (table 9). This result does not indicate the presence of greater localization for 

inventor than for examiner citations. 

Patents for which the examiner imposes either all citations or zero citations

could have special characteristics that may affect our findings. To verify that our results 

are robust to these potentially problematic patents, we replicate model 1 for three sub 

samples: excluding all patents where all citations are examiner imposed (model 5), 

excluding all patents with zero citation added by examiner (model 6), and excluding 

both groups (model 7). Note that the number of observations changes for these models
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since 580 citing patents have all their citations imposed by examiner and 114 have zero 

patents added. All coefficients in models 5, 6 and 7 are similar in magnitude and 

significance to those discussed previously, indicating that our findings are robust to 

inclusion of these groups.

We also test for whether results change when lawyers are involved in the 

process. We re-run all models for patents with and without lawyers, but do not find 

significant differences in the estimated coefficients from the full model; we do not 

report those results (available from authors). One concern is that the sample of patents 

in which lawyers are not involved is so small  – only 5 per cent of dyads – that this 

approach is not an adequate test for the true effect of lawyers on inventor prior art. We

suspect that they are important, and partially responsible for the closeness between 

examiner and inventor citation means.

We explore further the role of geographic localization in table 9. We re-estimate

model 1 from table 8, but instead of measuring distance in continuous miles between 

citing and cited patent we define distance with binary variables that indicate whether 

there is at least one pair of inventors in the citing-cited pair that is in the same country, 

state, county, economic area, or city. Note that only 7,632 observations are used to 

estimate models 2 through 5 since the geographic definitions used in these models

require that at least one inventor on both citing and cited patents be located in the US. 

The drop in sample size underscores the very high proportion of dyads (52%) that 

include at least one inventor located outside the United States. 

We focus our attention on the geographic component (results for the other 

independent variables remain similar to those in table 8). Examiners are 25% more
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likely than inventors to generate citations to patents that are in other countries than 

inventors, confirming their role as connectors of knowledge across national boundaries. 

This lends strong support for Jaffe and Trajtenberg’s (1998) prior finding that 

knowledge spillovers as evidenced by patent citations are strongly national in character.

Within the United States, we find more localization for inventor than examiner

citations: examiners are more likely to cite patents originating in different states, 

counties, and economic areas. However, the coefficient for city is not statistically 

significant. City may be too small to be an economically meaningful unit in measuring

knowledge flows; particularly knowledge flows related to employment communication, 

and transaction patterns in a local area. The economic area is designed to overcome

these limitations, and is statistically significant. Overall, then, we find evidence of more 

localization for inventor citations than examiner citations, which is congruent with our 

expectations about what would occur if citations indicate inventor knowledge. At the 

same time, the magnitude of the difference between examiners and inventors in 

geographic citing patterns is very low, as shown in figures 2 and 3. In other words, 

while the difference is in the expected direction, the magnitude of the difference is 

small. This raises the possibility that examiner citations are potentially inflating 

localization patterns that are being attributed to knowledge spillovers.

Analysis of highly-cited patents 

We now turn to our analysis of highly-cited patents. Our objective is to learn 

whether highly-cited patents – which are associated with patents of unusually high 

economic and technological value – “earn” their status through citation by examiners

(an administrative process) or citation by inventors (an evolutionary, or diffusion, 
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process). We identify all patents granted in 1998  (119,852 patents) that are in the top 

1% according to the total number of forward citations they receive between January 1 

2001 and August 30 2003 – the years for which we are able to distinguish between 

examiner and inventor citations. This yields a group of 1,175 highly-cited patents. The 

correlation between forward citations received from Jan 2001 to August 2003 and those 

received from grant date to August 2003 is 0.915, so we are confident that our group 

represents the cohort of highly-cited patents from 1998. For each highly-cited patent, 

we identify if it also belongs to the top 1% according to citations made only by 

examiners (top1_examiner) and citations made only by inventors (top1_inventor)

between January 1, 2001 and August 30 2003.  Since forward citations peak at about 

four years post-issue, we are fairly confident that even though our counts are both left- 

and right-truncated, we have a representative picture of the total flow of inventor and 

examiner citations to the 1998 cohort.

The correlation between top1_examiner and top1_inventor is –0.39 (p<0.01) 

suggesting that inventors and examiners select different patents as being important.

Table 10 provides a more detailed view of the differences between examiners and 

inventors. Each cell presents the number of patents in a category and its percentage 

share from the group of 1,175 highly-cited patents. We see a fairly high level of 

separation between patents selected by examiners and those selected by inventors, such 

that one or the other determines entry into the group of highly-cited patents. Only 17% 

(204 patents) of highly cited patents are in the top 1% as selected by both examiners and 

inventors. Only 12 percent are neither in the top 1% of inventors or examiners; for these 

patents, it is the addition of examiner and inventor citations that earns entry into the top-
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cited group.   Most patents are selected by either inventors or examiners, but not both:

47 per cent are highly-cited by inventors but not examiners; 24 percent are highly-cited 

by examiners but not inventors.  Overall, inventors are more important than examiners

in determining top-cited patents, with some 65% of the group in the top-cited by 

inventor category as against only 41 per cent in the top-cited by examiner category.

Across all patents, the correlation between the number of inventor and examiner

citations is equal to -0.13 (p<0.01), further indicating different selection processes by 

these two groups. 

To further explore differences between inventors and examiners in allocating 

citations to patents, we estimate correlations between examiner and inventor forward 

citations received between 2001 and August 2003 for all patents granted since 1998. We 

are interested in whether the differences we found in the highly-cited group between 

inventor and examiner citing patterns hold for all patents, and whether there are time

effects that change the ways in which patents are cited by examiners and inventors. We 

found in our logit models that inventors are more likely to cite older patents than 

examiners. It is possible that patents are initially cited by examiners, who are most

aware of recently-issued patents, and those same patents are subsequently cited by 

inventors – who learn of the prior art from examiners. Here, knowledge flows occur not 

between inventors directly, but indirectly with the examiner acting as intermediary.

We construct two measures of forward citation for patents issued since 1998. 

We first count the number of forward citations made by examiners and inventors.  We 

then rank patents within a given year into deciles, according to citations received by 

inventors and examiners. We correlate inventor and examiner citations streams for each 
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of these two measures. Table 11 shows the results, which reveal a pattern that varies 

over time. For recently issued patents, correlations are quite high and negative, 

suggesting a negative relationship between inventor and examiner selection of 

important patents.   Over time, these difference steadily attenuate, with correlations

becoming positive, such that for the oldest cohort (patents issued in 1998) the 

correlation is 0.38 – weak, but still indicative of some overlap between inventor and 

examiner choice of important patent. The data show a gradual pattern of convergence 

between inventor and examiner citations, which is congruent with a story of examiner-

mediated learning sketched above. We intend to explore these patterns further with 

additional statistical analysis as well as interviews with examiners and other patent 

professionals.

Discussion and conclusion 

Knowledge is difficult to measure, and researchers have understandably been 

eager to apply patent citation data to test theories of knowledge creation and diffusion 

by organizations and individuals. However, the question has always remained as to the

extent to which these data actually do measure knowledge and track knowledge flows. 

In particular, the addition of examiner citations and the process by which firms and 

attorneys craft patents would seem to add significant noise – and possibly distortions to 

–assumed patterns of knowledge flows. Apart from a few studies that show the potential 

weakness in the knowledge transfer assumption (Jaffe, Trajtenberg and Fogarty 2000; 

Meyer 2000; Michel and Bettels 2001; Thompson 2003; Breschi and Lissoni 2004; 

Cockburn, Kortum and Stern 2004) ours is among the first to compare the generation of 

inventor citations to examiner citations in the aggregated data. We also provide the first 
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analysis of how inventors and examiners differ in selecting highly-cited patents, which 

have been associated with high economic and technological importance. Our study is 

also important in showing the degree to which careful attention to cleaning and 

matching names, places and organizations is needed to avoid over- or under-estimating

true rates of matching in patent data. 

One methodological problem we face is that we are not able to separate citations 

specified by inventors from those added by inventors’ lawyers. Insofar as lawyers are 

likely to be cognitively and behaviorally much closer to examiners than to inventors this 

is a limitation of our analysis. We attempted to show whether lawyers affect citing 

patterns at the dyad level; however, so few dyads did not involve lawyers (less than 5 

per cent of dyads) that we cannot produce results that would tease apart the effects these 

actors have on inventor-only citations. Another methodological drawback is that we do 

not analyze the generation of non-patent references, which form an important body of 

prior art, particularly for emerging technologies. We also do not consider citations to 

patents issued outside the United States.  However, our analysis of patent citations 

should help inform many studies of knowledge flows which only consider prior art 

captured in US patents. 

Our simple expectation of what inventor citations “ought” to reveal – and the 

corresponding patterns of examiner citations – most approximates a world in which 

inventors reveal what is in their heads, and examiners fill in the missing pieces. We

make a simple assumption that inventors have the greatest knowledge of proximate

technologies, and measure proximity along a number of dimensions.  We find the 

greatest statistical support for this scenario in our analysis of localization of citations 
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and self-citation at the firm level.  However, regarding geography, the closeness with 

which examiner and inventor citations track each other raises the question of the 

economic significance of these differences, and raises the possibility of Type 2 error for 

inferring localization effects from aggregate data.  We find that examiner citations

differ from inventor citations in unexpected directions (examiners cite more proximate

patents) along the dimensions of technological distance and time.  The most unexpected 

finding is for self-citation at the individual level. The fact that self-citations by 

individuals (using the most stringent matching rules) are more likely to come from

examiners than inventors indicates that citations are not straightforward codification of 

inventor knowledge. We believe that inventors know of their prior patents, but they 

omit many of those from their lists of prior art, which are subsequently added back in 

by examiners. We do not have a strong theoretical explanation for these patterns, which

are even more perplexing given high inventor self-citation at the firm level: we can 

however, state that the results show that examiners are not adding noise to the data, but 

are including citations we would naturally attribute to inventors.

Overall, our results do not change the presumption that patents trace out 

knowledge flows: inventors face strong legal pressures to reveal all they know, and our 

results do show that inventor citations follow a pattern we would associate with 

inventor knowledge.   However, while researchers have argued that aggregate citations

are a noisy signal of inventor knowledge, our analysis indicates that changes introduced 

by patent examiners are both high and non-random.  Instead, we find that the “invisible

hand” of administration and the legal system is strong in generating aggregate citation 

streams.   Indeed, we suspect that even inventor citations taken on their own are an 
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imperfect measure of inventor knowledge, given the active role that attorneys and 

patent searchers play in the process. Our analysis should help indicate the direction of

the bias that might occur for a variety of theoretical hypotheses that make the 

assumption that aggregate citations measure knowledge transfer.

Our results point to interesting processes by which citations are generated that 

have not received as much attention in the literature.  We show that examiners and 

inventors adhere to different processes of selection of important patents. It may be that 

inventors and examiners develop “favorite” patents for citation that are guided by 

different criteria: in the case of inventors, these might be self citations or older patents 

with less risk of litigation, and for examiners, patents they know well or “thick” patents

that encapsulate a great deal of prior art. We intend to explore these different selection

processes with further analysis of highly-cited patents.

The finding that inventor and examiner forward citations slowly converge over 

time is potentially indicative of a learning process between examiners and inventors that 

has not been shown before in the literature and would further add complexity to the 

picture of citations as measuring knowledge flows.  At the turn of the last century, 

patent agents – the forerunners of modern patent attorneys and examiners – were 

positioned as information hubs about patents,  becoming important intermediaries in

emerging markets for technology(Lamoreaux and Sokoloff 2003).   We believe there 

are parallels in the current institutional environment that have been overlooked: firm-

level learning from examiners is likely important, both through citations and personnel 

movements as examiners leave the US Patent Office to become attorneys and patent

professionals working for inventors.
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Our paper suggests that prior art citations are not only codified lists of 

knowledge held by inventors, but legal and strategic tool in which the interests of 

inventors, attorneys, examiners, and competitors come into play. Our results show that

aggregate citations should not be viewed as a noisy signal of knowledge flows, but as a 

multi-dimensional signal involving heterogeneous processes and actors – knowledge 

flows among inventors, learning between inventors and examiners, and a complex

administrative process of codification by lawyers and examiners– that intersect to create

and shape technology fields. 
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Table 1
Summary statistics of full dataset

2001 2002 2003 * Total

Citing patents 166,064         167,424        109,351          442,839          
Cited patents 1,960,448      2,040,345     1,433,690       5,434,483       

Inventor 57% 59% 60% 59%
Examiner 43% 42% 40% 42%

% examiner citation x patent
Average 63% 63% 63%

0% 8% 8% 7%
(0%, 10%] 5% 5% 6%

(10%, 20%] 6% 6% 7%
(20%, 30%] 6% 6% 6%
(30%, 40%] 5% 5% 6%
(40%, 50%] 8% 8% 9%
(50%, 60%] 3% 3% 3%
(60%, 70%] 6% 6% 7%
(70%, 80%] 4% 4% 5%
(80%, 90%] 6% 6% 6%

(90%, 100%) 42% 41% 39%
100% 40% 39% 38%

* From January 1  to August 26 2003



Table 2. Comparison of full dataset and 3 year sample

2001 2002 2003
Universe Sample Universe Sample Universe Sample

Citing patents
Total 166,064         500               167,424          500          109,351         500               

With no citations 2.4% 2.0% 2.3% 2.4% 1.9% 2.8%
Cited patents

Total 1,960,448      5,668            2,040,345       5,902       1,433,690      6,296            
Citation/patent

Mean 11.84             11.33            12.23              11.80       13.18             12.62            
Std. Dev 17.74             13.63     18.47              21.00       20.75             18.41            

% Examiner citations
Mean 0.63               0.63              0.63 0.62 0.63               0.64              

Std Dev 0.37               0.37              0.37 0.37 0.37               0.38              
Application year

Mean 1,998.69        1,998.68       1999.699 1999.7 2,000.40        2,000.32       
Std. Dev 1.25               1.19              1.22 1.18 1.24               1.13              

Mann-Whitney Test z Prob >|z| z Prob >|z| z Prob >|z|
Citation/patent 0.606 0.5442 0.861 0.389 0.549 0.5828

% Examiner citations 0.38               0.70              0.746 0.455 (0.85)              0.40              
Application year 0.317 0.751 0.045 0.9369 0.932 0.3514

Kolmogorov-Smirnov Test D p-value D p-value D p-value
Citation/patent 0.0301 0.769 0.0305 0.755 0.0313 0.73

% Examiner citations 0.0246 0.929 0.0305 0.755 -0.0377 0.499
Application year 0.0099 1 0.007 1 0.0178 0.998

Mann-Whitney Test: H0: Sample= Universe, H1: Sample~= Universe
Kolmogorov-Smirnov Test: H0: Distribution of Sample= Distribution of Universe, H1: Distribution of Sample~= Distribution of Universe

IPC code Description
Rank in 
universe

Rank in 
sample % of sample

% of 
universe

G06F Electric Digital Data Processing 1 2 6.1% 6.3%
H01L Semiconductor Devices 2 1 6.4% 5.8%
A61K Preparations For Medical, Dental, or Toilet Purposes 3 3 3.6% 3.6%
A61B Diagnosis; Surgery; Identification 4 5 2.2% 2.0%
G02B Optical Elements, Systems, or Apparatus 5 4 2.3% 1.8%

G01N
Investigating or Analysing Materials By Determining Their 
Chemical or Physical Properties 6 7 2.0% 1.5%

B32B Layered Products 7 10 1.7% 1.5%

G11B
Information Storage Based On Relative Movement Between 
Record Carrier And Transducer 8 11 1.6% 1.5%

H01R Electrically-Conductive Connections 9 18 0.9% 1.3%
H04N Pictorial Communication, e.g. Television 10 6 2.1% 1.3%
G11C Static Stores 11 14 1.2% 1.3%
H04B Transmission 12 9 1.7% 1.2%
B41J Typewriters; Selective Printing Mechanisms 13 12 1.3% 1.2%

G06K
Recognitionof Data; Presentationof Data; Record Carriers; 
Handling Record Carriers 14 24 0.8% 1.2%

A61F
Prostheses; Orthopaedic, Nursing or Contraceptive Devices; 
Treatment or Protectionof Eyes or Ears 15 16 1.0% 1.1%

H04L Transmissionof Digital Information 16 26 0.8% 1.0%
B65D Containers For Storage or Transportof Articles or Materials 17 34 0.7% 1.0%
C07C Organic Chemistry 18 8 1.9% 0.9%
C07D Heterocyclic Compounds 19 15 1.1% 0.9%
B01D Separation 20 17 1.0% 0.9%

Total top 20 classes 40.5% 37.5%
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Table 5.1
Summary statistics for variables in regressions at the patent level

Variable Obs Mean Std. Dev. Min Max

perimposed 1,456    0.63     0.4 0 1
log_inventor_citations 1,456    1.55     1.0 0 5.43
lawyer 1,456    0.95     0.2 0 1
american_company 1,456    0.52     0.5 0 1
top_200 1,456    0.36     0.5 0 1
citing_type_academia 1,456    0.02     0.1 0 1
citing_type_industry 1,456    0.95     0.2 0 1
citing_type_govt 1,456    0.01     0.1 0 1

Table 5.2
Summary statistics for variables in regressions at the citing-cited pair level

Variable Obs Mean Std. Dev. Min Max

distance 16,089  2,368   2,322     0 10,781  
dif_country_all 16,089  0.40 0.49 0 1
difstateall 7,632    0.71 0.45 0 1
dif_county_all 7,632    0.81 0.39 0 1
dif_city_all 16,089  0.90 0.30 0 1
dif_company_all 16,089  0.89 0.31 0 1
dif_parent_all 16,089  0.87 0.33 0 1
same_inventor_all 16,089  0.06 0.24 0 1
same_inventor_city_all 16,089  0.03 0.16 0 1
same_inventor_company_all 16,089  0.04 0.20 0 1
same_examiner_all 16,089  0.07 0.25 0 1
same_lawyer 1,998    0.12 0.32 0 1
same_law_firm 11,974  0.09 0.28 0 1
years 16,089  8.70 6.16 0 27
dif_technology4 _all 16,089  0.45 0.50 0 1
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Table 7
Results of regressions at patent level

Dependent variable is % of examiner citations
Fixed effects for assignee

(1) (2) (3)

perimposed perimpose perimposed
log_inventor_citations -0.11 -0.109 -0.109

[0.015]** [0.015]** [0.015]**
lawyer -0.065 -0.066 -0.066

[0.066] [0.066] [0.066]
american_company -0.082

[0.133]
top_200 0.027

[0.365]
citing_type_academia 0.351

[0.442]
citing_type_industry 0.591

[0.360]
citing_type_govt 0.936

[0.440]*
Constant 1.054 0.973 0.381

[0.233]** [0.192]** [0.321]

F-test for fixed effects 1.19 1.24 1.24
Prob > F 0.0121 0.0029 0.0025

Observations 1456 1456 1456
R-squared 0.75 0.75 0.75
Standard errors in brackets
* significant at 5%; ** significant at 1%



Table 8
Results of logit regressions

Dependent variable is equal to 1 if citation comes from examiner, 0 otherwise
Results assume random effects structure for error term
Models 1, 2, 3, and 4 include all citing patents
Model 5 excludes 580 citing patents where all citations come from examiner
Model 6 excludes 114 citing patents where zero citations come from examiner
Model 7 excludes citing patents where both all (580) or zero (114) citations come from examiner

(1) (2) (3) (4) (5) (6) (7)

dif_company 1.785 1.966 2.069 1.672 1.843 1.758
[0.185]** [0.192]** [0.239]** [0.175]** [0.189]** [0.186]**

dif_parent 1.822
[0.181]**

same_inventor 1.245 1.286 1.282 1.54 1.343
[0.159] [0.167] [0.160]* [0.190]** [0.172]*

same_inventor_city 2.521
[0.407]**

same_inventor_company 1.918
[0.398]**

same_examiner_all 1.941 1.919 1.856 1.899 1.899 1.98 1.894
[0.205]** [0.203]** [0.198]** [0.202]** [0.200]** [0.216]** [0.201]**

dif_technology_4_all 0.701 0.696 0.698 0.697 0.705 0.694 0.705
[0.045]** [0.044]** [0.044]** [0.046]** [0.043]** [0.043]** [0.044]**

years 0.916 0.916 0.917 0.917 0.92 0.92 0.921
[0.005]** [0.005]** [0.005]** [0.005]** [0.005]** [0.005]** [0.005]**

distance 1 1 1 1 1 1 1
[0.000]* [0.000]* [0.000]* [0.000]* [0.000]* [0.000]** [0.000]

Observations 16089 16089 16089 16089 12977 14809 11697

Number of group(citing) 1,456      1,456         1,456          1,456           876              1,342           762              

Min cited per citing 1 1 1 1 1 1 2
Avg cited per citing 11.05 11.05 11.05 11.05 14.814 11.035 15.35
Max cited per citing 234 234 234 234 234 234 234

Wald Chi 2 422.56 431.836 448.923 420.883 397.437 430.397 392.806
Degrees of freedom 6 6 6 6 6 6 6

Rho 0.62 0.618 0.62 0.616 0.415 0.583 0.347
Chi bar2 7,258.57 7,255.77    7,276.21   7,264.78    2,918.24    6,455.35      2,505.46    
Standard errors in brackets
* significant at 5%; ** significant at 1%



Table 9
Results of logit regressions for different geographci units

Dependent variable is equal to 1 if citation comes from examiner, 0 otherwise
Results assume random effects structure for error term
Models 1, 2 include all citing patents
Model 3, 4, 5, and 6 include only those dyads where both citing and cited patents have all inventors in the US

(1) (2) (3) (4) (5) (6)

distance 1
[0.000]*

dif_country_all 1.254
[0.091]**

dif_state_all 1.355
[0.143]**

dif_county_all 1.55
[0.214]**

dif_ea_all 1.524
[0.176]**

dif_city_all 1.27
[0.213]

dif_company 1.785 1.78 1.453 1.388 1.355 1.56
[0.185]** [0.184]** [0.208]** [0.204]* [0.199]* [0.219]**

same_inventor 1.245 1.255 1.275 1.413 1.352 1.286
[0.159] [0.161] [0.206] [0.244]* [0.222] [0.237]

same_examiner_all 1.941 1.908 2.363 2.363 2.365 2.392
[0.205]** [0.200]** [0.354]** [0.358]** [0.356]** [0.360]**

years 0.916 0.916 0.904 0.905 0.904 0.905
[0.005]** [0.005]** [0.007]** [0.007]** [0.007]** [0.007]**

dif_technology_4_all 0.701 0.696 0.677 0.68 0.674 0.685
[0.045]** [0.045]** [0.064]** [0.065]** [0.065]** [0.064]**

Observations 16089 16095 7632 7632 7632 7632

Number of group(citing) 1,456     1,456     715        715        715        715        
Min cited per citing 1 1 1 1 1 1
Avg cited per citing 11.05 11.054 10.674 10.674 10.674 10.674
Max cited per citing 234 234 129 129 129 129

Wald Chi 2 422.562 420.481 253.133 252.349 256.307 248.088
Degrees of freedom 6 6 6 6 6 6

Rho 0.617 0.614 0.605 0.605 0.606 0.605
Chi bar2 7258.568 7058.75 2517.611 2524.263 2521.894 2530.132
Standard errors in brackets
* significant at 5%; ** significant at 1%



Table 10
Comparisons of highly-cited patents according to inventors and examiners

Is in top  1% according to examiners?
No Yes Total

Is
 in

 to
p 

1%
 

ac
co

rd
in

g 
to

 
in

ve
nt

or
s?

No
137 278 415

(12%) (24%) (35%)

Yes
556 204 760

(47%) (17%) (65%)

Total
693 482 1,175

(59%) (41%)

Top 1% for patents granted in 1998 based on forward citations received from 
Jan 2001 to August 2003
Correlation between forward citations received from Jan 2001 to August 2003 
and those received from grant date to August 2003 is 0.915

Table 11
Correlations of inventor and examiner forward citations by grant year of all 

cited patents

Correlation between examiner and inventor citations:
By # of forward 
citations

By decile of # 
forward citations

1998 0.381 0.119
1999 0.316 0.107
2000 0.223 0.081
2001 0.083 0.012
2002 -0.112 -0.098
2003 -0.714 -0.343

Forward citations received from Jan 2001 to August 2003
All correlations are siginificant at 1%
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